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This is a handout for a reading seminar at Leiden University. In this talk, I will give a very basic
introduction on the celebrated Atiyah–Singer index theorem, which is one of the most exciting and
elegant mathematical achievements in the past century. The theorem claims that the analytical index
of an elliptic (pseudo)differential operator, which is the Fredholm index of this operator (viewed
as a linear operator between suitable Hilbert spaces), equals the topological index of the operator,
defined in purely topological terms. I will define the analytical index and the topological index of an
elliptic operator, and sketch the proof why they are equal. The proof will be closely following the
original K-theoretic proof due to Atiyah and Singer [AS1], but I will also try to highlight the role of
K-theory of C*-algebras.

Notations and Conventions
• Let H be a complex Hilbert space. We write K(H) for the C∗-algebra of compact operators on

H, and write B(H) for the C∗-algebra of bounded operators on H. When the Hilbert space is
clear from the context we shall also omit H and write K and B for simplicity.

• We write ↣ for monomorphisms and ↠ for epimorphisms.

• We write Hc for the compactly-supported cohomology, with coefficients in Q. We write
Heven

c for the direct sum of all cohomology groups in even dimensions. Hodd
c is defined likewise.

• We write K0,K1, . . . for K-theory of C∗-algebras, and K0,K−1, . . . for compactly-supported
K-theory of topological spaces. For simplicity (and in consistency with literature) we will
usually use K instead of K0. For instance, let X be a locally compact topological space. Then
we have

K0(C0(X)) = K0(X) = K(X).

• Let E → X be a complex vector bundle of complex rank k. Then it is both oriented and
K-oriented (Proposition 3.1). We write ϕE ∈ K(E) for the Thom class of E in K-theory, and
ψE ∈ Heven

c (E) for the Thom class of E in compactly-supported cohomology.

• We use ⌣ to denote the cup product in (generalised) cohomology theories, like (compactly-
supported) cohomology and K-theory. One can find their definitions in some standard references,
for example, [Hat02, Hat03].
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1 An overview
The general form of an index theorem is given by an equation

Analytical index = Topological index

In the Atiyah–Singer index theorem, the analytical index is given by the Fredholm index of an
elliptic (pseudo)differential operator. The topological index is given by some purely “topological”
data coming from the symbol of the operator, together with the base manifold.

Theorem 1.1 (Atiyah–Singer)

Let D be an elliptic (pseudo)differential operator on a compact m-dimensional manifold M .
Then

a-ind(D) = t-ind(D),

where
a-ind := Index(D),

and
t-ind(D) := (−1)m

∫
TM

π∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]).

Atiyah–Singer index theorem vastly generalises the following “classical” theorems:

• Chern–Gauß–Bonnet theorem

• Hirzebruch–Riemann–Roch theorem.

• Hirzebruch signature theorem.

Before going into the details, one might wonder why such a theorem could exist. There are
various discussions on this specific question, aiming at an insight of such a tremendous theorem.
One superficial idea might be that the Fredholm index is homotopy-invariant:

Proposition 1.2

Let H be a complex infinite-dimensional Hilbert space, F(H) be the set of bounded Fredholm
operators on H, equipped with the norm topology. Then the map

F(H) → Z, T 7→ Index(T )
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is continuous. Therefore, the Fredholm index is locally constant.

The fact at least implies that the analytical index is actually “topological”, and one could expect
a topological formula for it. A generalisation of the previous proposition is:

Theorem 1.3 (Atiyah–Jänich)

Let X be a compact Hausdorff space. Then

[X,F(H)] ∼= K(X).

where [X,Y ] denotes the set of homotopy classes of maps from X to Y .

The previous proposition is the special case of Atiyah–Jänich Theorem where X = pt. The
theorem also motivates that we can define an index for “family of operators parametrised by X”
whereas it should take value in K(X) instead of K(pt) = Z. This is the starting point of [AS4].

2 The analytical index
From now on we shall always let D be a scalar-valued elliptic pseudodifferential operator of order 0
on a compact m-dimensional manifold M , whose meaning will be explained soon. In Section 4 we
shall explain how to generalise to more general cases.

2.1 K-theory and Fredholm index
The analytical index a-ind(D) of D is just its Fredholm index (view D as a Fredholm operator on
L2(M)). The best way to understand the Fredholm indices and operators might be introducing the
(topological) K-theory of C∗-algebras. Nevertheless we will only treat it as a blackbox. It suffices to
know that:

1. Topological K-theory is a homology theory of C∗-algebras in the sense that: let

I
i
↣ E

q
↠ Q

be an extension of C∗-algebras (that is, I is a closed ideal in the C∗-algebra E). Then there is
an induced long exact sequence

· · · → Ki(I) i∗−→ Ki(E) q∗−→ Ki(Q) ∂−→ Ki−1(I) → · · ·

of abelian groups.

2. The biggest distinction between topological K-theory and algebraic K-theory (of rings) is that
in topological K-theory we have Bott periodicity

Ki+2(A) ∼= Ki(A)

for any C∗-algebra A. Combined with 1 we have a 6-term cyclic exact sequence

K0(I) K0(E) K0(Q)

K1(Q) K1(E) K1(I).

3. (Relation to topological K-theory of topological spaces). Let X be a locally compact topological
space. Then C0(X) is a C∗-algebra, and Ki(C0(X)) ∼= K−i(X). The right-hand side is defined
by K−i(X) := K(X×Ri), the (compactly supported) K-theory of X×Ri, introduced in Bram’s
talk.
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Now we are at the right place to define the analytical index. Recall that (see, e.g. [Ols94, Chapter
14]):

Definition 2.1

Let H be a complex Hilbert space. An operator T ∈ B(H) is called Fredholm if it has closed
image, has finite-dimensional kernel and finite-dimensional cokernela. The Fredholm index of
T , denoted by Index(T ), is defined by

Index(T ) := dim kerT − dim cokerT.
aThe image being closed is actually an unnecessary condition: it is automatically true if T has finite-dimensional

kernel and cokernel.

and

Theorem 2.2 (Atkinson)

T ∈ B(H) is Fredholm, if and only if it is invertible modulo compact operators, if and only if
the image of T in B(H)/K(H) is invertible.

We have an extension of C∗-algebras
K ↣ B ↠ B/K.

An invertible element in a C∗-algebra A defines a class in K1(A). If T is Fredholm, then its image in
B/K is invertible and represents a class [T ] in K1(B/K). The long exact sequence in K-theory yields
a boundary map

∂ : K1(B/K) → K0(K) ∼= Z.
We have the following well-known result (see, e.g. [Ols94, Chapter 14]):

Theorem 2.3

The boundary map K1(B/K) ∂−→ K0(K) ∼= Z sends the class [T ] ∈ K1(B/K) to the Fredholm
index Index(T ) of T .

2.2 Pseudodifferential extension
Pseudodifferential calculus is a very deep and complicated topic. We shall be very brief and ad hoc
here.

Recall from Yufan’s talk that we can construct operators on L2(Rn) by “quantising” (that is,
applying inverse Fourier transforms) “nice” functions

a(x, ξ) 7→ A = Op(a) = a(x,−i∂x),

or more formally
Af(x) :=

∫
Rn
a(x, ξ)f̂(ξ)ei⟨x,ξ⟩dξ.

Such operators are called pseudodifferential operators. A pseudodifferential operator A = Op(a)
on Rn is defined by its symbol a(x, ξ), where a is a suitable function defined on U × Rn ⊆ Rn × Rn

for some open set U . Here U × Rn should be interpreted as the cotangent bundle T ∗U . If the
function a has an asymptotic expansion1

a(x, ξ) ∼
m∑

i=−∞
ai(x, ξ)

1Here the asympotic expansion should be interpreted as: for every k, outside some compact set, the remainder
a −

∑m

i=k
ai has order lower than k.
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for some integer m, where each ai is homogeneous of order i in ξ:

ai(x, λξ) = λiai(x, ξ),

then A = Op(a) is called a classical pseudodifferential operator of order m.2

The principal symbol of an order-m classical pseudodifferential operator is the “leading term”
of the symbol:

σ(A)(x, ξ) := ai(x, ξ) = lim
λ→∞

a(x, λξ)/λm

The constructions above can be generalised to manifolds by requiring them to be (pseudo)differential
operators in local charts.3 Then (x, ξ) are local coordinates of points in T∗M , and the principal
symbol σ(A) defines a (smooth) function T∗M → C. We restrict it to the cosphere bundle
S∗M = {x ∈ T∗M | ∥x∥ = 1} to obtain σ(A) ∈ C∞(S∗M).

If we restrict to classical pseudodifferential operators of order 0, then they are bounded operators
on L2(M), and we take the norm completion to obtain a C∗-algebra Ψ0(M). Operators in Ψ0(M) are
called pseudodifferential operators of order 0. The principal symbol σ extends to a surjective
∗-homomorphism Ψ0(M) ↠ C(S∗M). In particular, we have the following extension of C∗-algebras,
referred to as the pseudodifferential extension:

Theorem 2.4

There is an extension of C∗-algebras

K(L2(M)) ↣ Ψ0(M)
σ
↠ C(S∗M).

In particular, it fits in the following commutative diagram:

K(L2(M)) Ψ0(M) C(S∗M)

K(L2(M)) B(L2(M)) B(L2(M))/K(L2(M)).

σ

Therefore, we may identify a principal symbol σ(A) in C(S∗M) with an element in the Calkin
algebra B/K. By functoriality of K-theory we have

K1(C(S∗M)) K0(K)

K1(B/K) K0(K)

∂

∂

(1)

So the boundary map can be identified with the Fredholm index when acting on the K1-class of a
Fredholm operator.

Now we introduce ellipticity:

Definition 2.5

D ∈ Ψ0(M) is called elliptic, if σ(D) is invertible on S∗M , or equivalently if σ(D)(x, ξ) ̸= 0 for

2Or we can characterise the order using the growth condition: there exists constant Cα,β such that
∣∣∂β

x ∂
α
ξ p(x, ξ)

∣∣ ≤
Cα,β(1 + |ξ|)m−|α| for all multi-index α and β. The order of A is the supremum of such m.

3For differential operators, which are operators with polynomial symbols, such constructions are straightforward
because all differential operators are local. But pseudodifferential operator are not local in general. A well-defined
global pseudodifferential operator on M should satisfy that it restricts to pseudodifferential operator on Rn for any
local chart of M . See [Tre13].
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(x, ξ) ∈ T∗M \ 0.

Now Atkinson’s theorem immediately implies:

Theorem 2.6

If D ∈ Ψ0(M) is elliptic, then it is Fredholm (as a bounded operator on L2(M)). The
Fredholm index Index(D) of D is the image of [σ(D)] ∈ K1(C(S∗M)) under the boundary map
K1(C(S∗M)) ∂−→ K0(K) in (1).

2.3 The K(TM)-symbol class
We have seen that the symbol σ(D) represents a class [σ(D)] ∈ K1(C(S∗M)) = K−1(S∗M). In
most literatures and in the construction of the topological index in Section 3, we consider a class in
K0(TM). Given [σ(D)] ∈ K1(C(S∗M)), we obtain a class in K0(C0(TM)) = K(TM), which we also
denote by [σ(D)], under the following composition of maps:

K−1(S∗M) ∂−→ K0(T∗M)
∼=−→ K0(TM),

where:

• ∂ is the boundary map in K-theory induced by the extension

C0(T∗M) ↣ C(D∗M) ↠ C(S∗M) (2)

where D∗M := {x ∈ T∗M | ∥x∥ ≤ 1} is the codisk bundle over M , and S∗M := {x ∈
T∗M | ∥x∥ = 1} is the cosphere bundle over M . The map C(D∗M) ↠ C(S∗M) is given
by restriction of functions, and the kernel consists of functions on D∗M vanishing on the
boundary. D∗M is homeomorphic to the one-point compactification of T∗M , and S∗M is sent
to infinity under this homeomorphism. Hence we may identify the kernel with functions on
T∗M vanishing at infinity.

• We use a Riemannian metric to identify T∗M with TM , hence K(T∗M) with K(TM).

We have defined the analytical index a-ind(D) using the class [σ(D)] ∈ K−1(S∗M). It turns out
that it does not matter if we move to [σ(D)] ∈ K(TM). In fact, we have:

Proposition 2.7

a-ind(D) depends only on the K(TM)-symbol class [σ(D)] ∈ K(TM).

Proof (sketch)

The extension (2) induces a long exact sequence

· · · → K1(C(D∗M)) → K1(C(S∗M)) ∂−→ K0(C0(T∗M)) → · · · ,

if [σ(D)] ∈ K1(C(S∗M)) lies in the kernel of the boundary map K1(C(S∗M)) ∂−→ K0(C0(T∗M)),
by exactness it is the restriction of an invertible function in C(D∗M). But D∗M has properly
contractible fibres, hence any function in C(D∗M) is properly homotopic to a function which is
fibrewise constant. Such a function is the symbol of a nowhere vanishing multiplication operator,
and its index is zero since it is invertible.

From now on, we will only consider [σ(D)] ∈ K(TM). We call it the K(TM)-symbol class of D.
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3 The topological index
Let [σ(D)] be the K(TM)-symbol class of D. The topological index t-ind(D) is defined as the image
of [σ(D)] under the following composition of maps:

K(TM) i!−→ K(TRn)
∼=−→ Z,

where the map i! is the wrong-way map, constructed using the Thom isomorphism, which we will
elaborate on. The isomorphism K(TRn)

∼=−→ Z is the Bott periodicity. In fact, it is also a special
case of the Thom isomorphism.

3.1 Thom isomorphism
Let E → M be an oriented vector bundle over a compact base. The Thom isomorphism of compactly-
supported cohomology states that the cohomology groups of E are isomorphic to those of M with a
dimension shift.

Being more precise. Recall that a real vector bundle E π−→ M of rank-k is oriented, if and only if
there exists ψE ∈ Hk

c (E) such that ψE restricts to a generator of Hk
c (Ex) for each x ∈ M . Such ψE

is unique up to a sign and called the Thom class of E. There is an isomorphism

H•
c(M)

∼=−→ H•+k
c (E), α 7→ π∗α ⌣ ψE .

The situation in (compactly-supported) K-theory is just similar. In fact, this can be defined for all
generalised cohomology theories. We say a real vector bundle E π−→ M of even rank is K-oriented,
if there exists ϕE ∈ K(E), such that ϕE restricts to a generator of each K(Ex) ∼= Z (here we need
that Ex is even-dimensional). There is an isomorphism (here we apply Bott periodicity to remove
the dimension shift):

K(M)
∼=−→ K(E), α 7→ π∗α ⌣ ϕE .

Real vector bundles are not K-oriented in general. But we have the following:

Proposition 3.1

Every complex vector bundle is oriented and K-oriented.

Example 3.2

Bott periodicity is a special case of the Thom isomorphism. Bott periodicity states that
K(pt) ∼= K(R2n). Since R2n ∼= Cn, it is a K-oriented vector bundle over the base, which is a
single point. The Thom class is just a generator ϕR2n ∈ K(R2n), called the Bott class, and the
Thom isomorphism sends an element α ∈ K(pt) to π∗α ⌣ ϕR2n . If we identify K(pt) with Z,
then the isomorphism is just given by n 7→ nϕR2n for n ∈ Z.

Now we would like to apply the Thom isomorphism to obtain a wrong-way map in K-theory. Let
i : X → Y be a proper embedding of manifolds. Then it induces an embedding i∗ : TX → TY . We
want to use Thom isomorphism to find a map K(TX) → K(TY ) between K-theory. But TY is not
a vector bundle over TX. For this we consider the extension of vector bundles over X:

TX
i∗
↣ TY |X ↠ TY |X/TX.

The vector bundle TY |X/TX is called the normal bundle of X in Y . We denote it by NX. Then
TY |X decomposes as TX ⊕NX. Using the lemma,
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Lemma 3.3 (Tubular neighbourhood theorem)

There is an open neighbourhood N of X in Y which is diffeomorphic to NX. Such an N is
called a tubular neighbourhood of X in Y ,

we can identify N with the vector bundle NX over X, and N is an open subset of Y . The embedding
i decomposes as i : X ↣ N ↣ Y , similarly i∗ : TX ↣ TN ↣ TY . N being a vector bundle over X
implies that TN is a vector bundle over TX. In particular, TN admits a complex structure and
hence K-oriented: recall that TY |X = TX ⊕ NX ∼= TX ⊕ N . So TTY |TX

∼= TTX ⊕ TN . But
TTY |TX

∼= π∗(TY |X) ⊕π∗(TY |X) and TTX ∼= π∗TX⊕π∗TX, where π : TX → X is the projection
of the tangent bundle. So TN ∼= π∗N ⊕ π∗N = π∗N ⊗ C. Therefore TN can be equipped with a
complex structure and we obtain the Thom isomorphism

K(TX)
∼=−→ K(TN).

The inclusion TN ↣ TY induces a map
K(TN) → K(TY ).

To see this, notice that there is an “extension by zero” ∗-homomorphism C0(TN) ↣ C0(TY ) (here
TN ⊆ TY must be open!) Then we have an induced map K0(C0(TN)) → K0(C0(TY )) because
K-theory of C∗-algebras is functorial.

The composition of the two maps above gives a map i! : K(TX) → K(TY ) as desired.

3.2 The cohomological formula
Now we derive the cohomological formula for the topological index. This is done by a diagram chase,
as first carried out in [AS3]. Recall from Bram’s talk that the diagram

K(M) K(E)

Heven
c (M) Heven

c (E)

Ch

Thom

é Ch

Thom

fails to commute. The “defect” measured by the Todd class of Ē, the conjugate bundle of E:

Lemma 3.4

The following diagram commutes:

K(M) K(E)

Heven
c (M) Heven

c (E)

(−1)k Td(Ē)−1
⌣Ch

Thom

Ch

Thom

where Ē is the conjugate bundle of E, and k is the complex rank of E.

The following diagram commutes:
[σ(D)] t-ind(D) · ϕTRn t-ind(D)

K(TM) K(TN) K(TRn) K(pt) ∼= Z

Heven
c (TM) Heven

c (TN) Heven
c (TRn) Heven

c (pt) ∼= Q

(−1)n−mπ∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]) (−1)n−mπ∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]) ⌣ ψTN (−1)n t-ind(D)ψTRn (−1)n t-ind(D)

Thom Thom

Thom Thom
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• Let M be an m-dimensional compact manifold, embedded in Rn. We have seen that N is
isomorphic to the normal bundle of X in Y , and TN has complex rank (n−m).

• The topological index is the image of [σ(D)] under the composition of maps in the first row. In
particular, the Thom isomorphism K(pt) ∼= K(TRn) sends the index t-ind(D) to t-ind(D)·ϕTRn

where ϕTRn is the Bott element of TRn.

• We apply Chern characters to every K-theory group, and use the previous theorem to obtain
this big commutative diagram. In the commutative square on the right, the Todd class of
TRn is just 1, and the image in Heven

c (TRn) is just (−1)n t-ind(D)ψTRn , where ψTRn is the
Bott class in H2n

c (TR2n). The extra factor (−1)n comes from the Chern character defect. The
diagram on the left can be worked out in a similar way.

• Now we look at the Todd class Td(TN). We have seen that TN ∼= π∗N ⊗ C, so TN is
isomorphic to its complex conjugate. Since TN ⊕ TTM ∼= TRn is trivial, computation shows
that Td(TN) = Td(TTM)−1. And TTM = π∗TM ⊗C. Therefore we obtain the characteristic
class in Heven

c (TN):

(−1)n−mπ∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]) ⌣ ψTN ,

whose image in Heven
c (TRn) is just t-ind(D) · ϕTRn since the diagram commutes.

• The last thing is to unzip t-ind from the characteristic classes we have just obtained. We
integrate the two forms over TRn (which is just pairing with the fundamental class of TRn in
H2n(TRn)):∫

TRn
(−1)n−mπ∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]) ⌣ ψTN =

∫
TRn

(−1)n t-ind(D)ψTRn .

The right-hand side is just (−1n) t-ind(D). The integral on the left-hand side restricts to the
integral on TN since ψTN is compactly supported on TN . Recall that the inverse of the Thom
isomorphism is integrating along the fibres, the integral becomes

(−1)n−m
∫

TM
π∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]).

Compare both sides of the equation we obtain:

Theorem 3.5 (Cohomological formula of the topological index, I)

The topological index t-ind(D) equals

t-ind(D) = (−1)m
∫

TM
π∗ Td(TM ⊗ C) ⌣ Ch([σ(D)]),

where m is the dimension of M , π : TM → M is the bundle projection of TM .

If M is oriented, then Thom isomorphism applies to TM and we can obtain a similar cohomological
formula where the integral is on M instead of TM . However, an extra factor (−1)m(m−1)/2 is involved
due to the orientation of M .

Theorem 3.6 (Cohomological formula of the topological index, II)

If M is oriented, then the topological index t-ind(D) equals

t-ind(D) = (−1)m(m+1)/2
∫

M
π!(π

∗ Td(TM ⊗ C) ⌣ Ch([σ(D)])),
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where π! is “integrating along fibres”.

4 Remarks on the general cases
So far, we have imposed several restrictions on the pseudodifferential operator D.

• The ellipticity guarantees that D is Fredholm. This is indeed not a necessary condition: there
are operators which are not elliptic but nevertheless Fredholm, see for example [BvE14]. This
is, however, far from our goal.

• We have restricted to order-zero operators. Such operators are bounded on L2(M). While
considering pseudodifferential operators of higher orders, they are no longer bounded on L2(M).
An elliptic pseudodifferential operator D of order m defines a bounded Fredholm operator
Hs(M) → Hs−m(M) for all s, where Hs(M) and Hs−m(M) are Sobolev spaces. Another
viewpoint is to consider D as an unbounded Fredholm operator on L2(M).
In either case, a pseudodifferential operator D of order greater than 0 does not belong to
B(L2(M)); such operators do not even form an algebra. But we can consider the operator

D(1 +D2)−1/2,

which has order zero, hence bounded. In particular, this operator has the same symbol class
with D. Since indices are defined as collections of maps K(TX) → Z, we see that studying
order-zero operators is enough.

• We have restricted to scalar-valued operators, that is, they are defined by scalar-valued symbols.
However, most elliptic differential operators are operators which act on sections of vector
bundles; that is, they are linear maps

D : C∞(M ;E) → C∞(M ;E)

where E is a vector bundle over a compact manifold M , and C∞(M ;E) denotes the smooth
sections. (The scalar valued case can be viewed as such a map with E = M × C). In these
cases, the symbol σ(D) is a section of the endomorphism bundle

End(π∗E),

where π : T∗M → E is the bundle projection; or rather its restriction to S∗M . Such sections
are in bijection with

EndC(S∗
M) C(S∗M ;π∗E),

the C∗-algebra of adjointable operators on the Hilbert C(S∗M)-module C(S∗M ;π∗E).
Assuming M is compact, then S∗M is also compact and hence C(S∗M) is unital. Since π∗E is
finite-dimensional, C(S∗M ;π∗E) is finitely-generated. Then EndC(S∗

M) C(S∗M ;π∗E) is Morita
equivalent to C(S∗M). Consequently, nothing changes on the K-theory level. See, e.g. [MT05],
for more on Hilbert C∗-modules.

5 Proof of the index theorem
In the end, we will sketch the elegant proof of the index theorem, due to Atiyah–Singer [AS1]. The
strategy of the proof is to show that there is a unique index satisfying certain constraints. Both
a-ind and t-ind satisfy them, hence the two indices must coincide.

More precisely, an index is a collection of group homomorphisms ind = {K(TX) → Z} for each
compact manifold X. We have
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Proposition 5.1

There is a unique index ind satisfying 1 and 2:

1. If X = pt, then ind: K(pt) → Z is the identity map.

2. If X ↣ Y is a proper embedding of manifolds, then ind ◦i! = ind, where i! is the wrong-way
map. (See Section 3.1).

Proof

Consider X
i
↣ Rn j

↢ pt, where X ↣ Rn is a proper embedding. It induces

K(TX) K(TRn) K(pt)

Z

i!

ind
ind

ind

j!
∼=

,

Condition 2 claims that the index K(TX) → Z on X is determined by the index K(TRn) → Z
on Rn, and by Thom isomorphism determined by the index K(pt) → Z on pt, but this is unique
by Condition 1.

The remaining work is to show that both a-ind and t-ind satisfy Conditions 1–2 in the previous
proposition.

Proposition 5.2

t-ind satisfies conditions 1–2.

Proof

1 is just Bott periodicity; 2 is by functoriality.

Proposition 5.3

a-ind satisfies conditions 1–2.

Condition 1 for a-ind is easy to check. Let M = pt, then a vector bundle over M is just a finite-
dimensional vector space, and a class [E]−[F ] ∈ K(pt) is identified with dimE−dimF ∈ Z. A symbol
σ(D) is just a linear map E → F , so dimE = dim kerD+dim imD = dim kerD+dimF−dim cokerD.
Hence a-ind(D) = dimE − dimF .

Checking condition 2 is difficult. For a detailed proof we refer to Atiyah–Singer’s original work
[AS1], in which they introduced the equivariant index theorem as well. Recall that i! is constructed
as the composition

i! : K(TX) K(TN) K(TY )

Z

Thom
∼=

ind
ind

ind

To show that the outer diagram commutes, it suffices to show that the two triangles commute.
The right triangle commutes due to the excision property of the analytical index. The idea: the
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extension homomorphism C0(TU) ↣ C0(TX) lifts to C(S∗U) ↣ C(S∗X), and the boundary map in
K-theory is natural, so we must have the same index.

The commutativity of the left triangle is hard and we will only sketch the main ideas. The proof
is based on the following “product formula”, and its equivariant version.

Recall that K-theory of topological spaces allows an exterior product (cross product):

K(X) ⊗ K(Y ) ×−→ K(X × Y ), x⊗ y 7→ π∗
Xx ⌣ π∗

Y y

where πX : X × Y → X and πY : X × Y → Y .

Lemma 5.4

Let x ∈ K(TX) and y ∈ K(TY ). The the cross product x× y is an element in K(TX × TY ) ∼=
K(T (X × Y )). And we have

a-ind(x× y) = a-ind(x) · a-ind(y).

The product formula already solves the case when N is trivial: the Thom isomorphism

K(TX) → K(TN)

sends x ∈ K(TX) to π∗
1x · ϕTN where π1 is the projection TN → TX. If N ∼= X × Rn is

trivial, then ϕTN is just the pullback of the Bott element ϕTRn ∈ K(TRn) under the projection
TN p−→ TRn. So x is sent to π∗

1x ⌣ π∗
2ϕTRn = x × ϕTRn . The product formula then claims that

a-ind(x× ϕTRn) = a-ind(x) · a-ind(ϕTRn) = a-ind(x) because the Bott element has index 1.
The discussion above also shows that the Thom isomorphism for the trivial bundle TN ∼=

TX × TRn ∼= TX × R2n is given by the composition

K(TX) → K(TX) ⊗ K(TRn) ×−→ K(TN), x 7→ x⊗ ϕTRn 7→ x× ϕTRn .

But N is not trivial in general. In that case, the cross product K(TX) ⊗ K(TRn) ×−→ K(TN)
does not make sense. But one can define a “twisted” cross product instead. In this situation we
require the K-theory classes in the typical fibre TRn are well-defined globally, this requires they are
equivariant with respect to the structure group O(n). The cross product should be replaced by a
twisted product

K(TX) ⊗ KO(n)(TRn) → K(TN)

where we need an “O(n)-equivariant Bott element” ϕO(n)
TRn , which comes from the following “equivariant

Bott periodicity”:
KO(n)(pt)

∼=−→ KO(n)(TRn), x 7→ π∗x ⌣ ϕ
O(n)
TRn .

Atiyah and Singer proved that an “equivariant product formula” holds as well, and the Thom
isomorphism K(TX)

∼=−→ K(TN) sends an element to its twisted product with the equivariant Bott
element. Since the equivariant Bott element has analytical index 1, a similar argument as in the
trivial case shows that the Thom isomorphism does not change the analytical index, and the proof
is done.

Notes and comments
I assume that my audience have some basic knowledge on K-theory and algebraic topology. Knowing
K-theory for C∗-algebras will be helpful but not necessary, as we will only use very few properties of
them.

Most of the contents and details can be found in Atiyah–Singer’s masterpiece [AS1]. The
cohomological formula is presented in [AS3]. Liturature that I refer to include [Muk13, Sha06, Lan05],
but they are mostly explaining the original article by Atiyah and Singer.
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The thesis [vE00] should be especially mentioned, since it interprets the index theory in the
framework of K-theory of C∗-algebras, which I favour. Such a strategy should have a long history,
and eventually leads to the most elegant and powerful way to attack the index theory: Kasparov’s
bivariant K-theory [Kas88]. I have to admit that although K-theory of C∗-algebras is mentioned in
my talk, the proofs depend quite little on this powerful tool. One can find a purely C∗-algebraic
proof in [Hig93], which is closely related to E-theory, another bivariant K-theory of C∗-algebras.

References
[AS1] Michael F Atiyah and Isadore Manuel Singer. The index of elliptic operators: I. Annals of

mathematics, pages 484–530, 1968.

[AS3] Michael F Atiyah and Isadore M Singer. The index of elliptic operators: III. Annals of
mathematics, pages 546–604, 1968.

[AS4] Michael F Atiyah and Isadore M Singer. The index of elliptic operators: IV. Annals of
Mathematics, 93(1):119–138, 1971.

[BvE14] Paul F Baum and Erik van Erp. K-homology and index theory on contact manifolds. Acta
Mathematica, 213(1):1–48, 2014.

[Hat02] Allen Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002.

[Hat03] Allen Hatcher. Vector bundles and K-theory. http://www.math.cornell.edu/~hatcher,
2003.

[Hig93] Nigel Higson. On the K-theory proof of the index theorem. Contemporary Mathematics,
148:67–67, 1993.

[Kas88] Gennadi G Kasparov. Equivariant KK-theory and the Novikov conjecture. Inventiones
mathematicae, 91(1):147–201, 1988.

[Lan05] Gregory D Landweber. K-theory and elliptic operators. arXiv preprint math/0504555, 2005.

[MT05] Vladimir M Manuilov and Evgenij V Troitsky. Hilbert C∗-modules, translations of mathe-
matical monographs, 226. American Mathematical Society, Providence, RI, 2005.

[Muk13] Amiya Mukherjee. Atiyah–Singer Index Theorem – An Introduction. Springer, 2013.

[Ols94] Niels Erik Wegge Olsen. K-theory and C∗-algebras: A Friendly Approach. Oxford University
Press, 1994.

[Sha06] Patrick Shanahan. The Atiyah–Singer index theorem: an introduction, volume 638. Springer,
2006.

[Tre13] Jean-François Treves. Introduction to Pseudodifferential and Fourier Integral Operators:
Pseudodifferential Operators. Springer Science & Business Media, 2013.

[vE00] Erik van Erp. The Atiyah–Singer index theorem, C∗-algebraic K-theory, and quantization.
2000. Master thesis.

13

http://www.math.cornell.edu/~hatcher

	1 An overview
	2 The analytical index
	2.1 K-theory and Fredholm index
	2.2 Pseudodifferential extension
	2.3 The K(TM)-symbol class

	3 The topological index
	3.1 Thom isomorphism
	3.2 The cohomological formula

	4 Remarks on the general cases
	5 Proof of the index theorem

