
COARSE GEOMETRY AND GROUPOIDS

YUEZHAO LI

Abstract. These are a personal note of a mini-course of Nick Wright on the
coarse Baum–Connes conjecture, provided in the autumn school on large-scale
geometry in Göttingen, October 9–13, 2023.

1. Introduction

During October 9–13, 2023, I attended an autumn school on large-scale geome-
try in Göttingen. There were four scheduled mini-courses. The courses of Cornelia
Drutu (Oxford) and Alessandro Sisto (Heriot-Watt) were more on the geometry
of groups (geometric group theory, property (T) and a-T-menability), which were
interesting but yet not quite my field of research. Guoliang Yu (Texas A&M) was a
plenary speaker for coarse index theory, but he was unfortunately sick before the au-
tumn school. Instead, Thomas Schick (Göttingen) took over the lectures. Thomas’s
lectures were interesting, but I had been quite familiar with those materials before.

Nick Wright (Southampton) gave lecture series on the coarse Baum–Connes con-
jecture, a topic that I also have some knowledge on. Towards the end, he covered
some old results of Skandalis, Tu and Yu [6], in which groupoid models of Roe
C∗-algebras were built. These results are both interesting and useful for me. My
previous experience with topological insulators tells that the Roe C∗-algebras are
quite universal as a dynamical object, and in most cases serve as the universal tar-
get for doing index theory. A groupoid model for a Roe C∗-algebra makes this more
explicit. Moreover, a Roe C∗-algebra has many concrete realisations depending on
the choice of the ample module, and it is important in physics to keep in mind this
choice. Reinterpreting a Roe C∗-algebra as a groupoid crossed product sometimes
fixes such a choice and might hence become useful for physical applications.

The following will be devoted to a non-faithful recording of Nick Wright’s lec-
tures. I will not cover the fundaments that I am already quite familiar with.

2. Coarse spaces

We start with the construction of uniform and non-uniform Roe C∗-algebras.
Let X be a uniformly locally finite metric space. Uniformly locally finite means

that for every R > 0, there exists N such that every R-ball in X has at most N
points. An operator T ∈ B(ℓ2X) can be described by an infinite matrix (Tx,y)x,y∈X .
The propagation of T is

Prop(T ) := sup{d(x, y) | Tx,y ̸= 0}.

Write Cu[X] for the ∗-algebra of operators with finite propagation. The uniform
Roe C∗-algebra on X is the closure of Cu[X] inside B(ℓ2X), denoted by C∗

u(X).
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The above construction actually describes a coarse structure from a metric space,
specifying the controlled sets (=entourages) as sets of points with finite supremal
distance. We may, instead, define in a more general setting.

Definition 2.1. A coarse structure on a set X is E ⊆ P(X × X) consisting of
so-called controlled sets or entourages, satisfying:

• If E ∈ E, then ET := {(y, x) | (x, y) ∈ E} ∈ E.
• If E ∈ E and F ∈ E, then E ◦ F := {(x, y) | ∃z, (x, z) ∈ E , (z, y) ∈ F} ∈ E.
• If E ∈ E and F ∈ E, then E ∪ F ∈ E.
• If E ∈ E and F ⊆ E , then F ∈ E.

A coarse structure E is unital if ∆X ∈ E, and is weakly connected if {(x, y)} ∈ E
for every pair of points x, y ∈ X.

Example 2.2. Let X be a metric space. We may equip it with two coarse structures.
The first one, which is the usual one, consists of entourages E such that

sup{d(x, y) | (x, y) ∈ E} < +∞.

Example 2.3. Another finer coarse structure on a metric space X is specified by
the entourages E satisfying the property: for each pair of points (x, y) ∈ E :

d(x, y) → 0 at infinity.
Formally, this means that for every ϵ > 0, there exists a bounded set (Definition 2.5)
K ⊆ X, such that d(x, y) < ϵ for every (x, y) ∈ E \K ×K.

Example 2.4. Let X be a topological space, and X̄ be a compactification of it.
Then a coarse structure on X is given by the entourages E ⊆ X ×X such that

Ē \X ×X ⊆ ∆X̄ .

Example 2.3 is the special case where X̄ is the one-point compactification of X
equipped with the topology given by its metric.

Definition 2.5. A subset K ⊆ X is bounded if K×K ∈ E. A collection of subsets
C ⊆ P(X) is uniformly bounded if there exists E ∈ E such that K×K ⊆ E for every
K ∈ C. Namely, there exists a uniform entourage such that every element in C is a
bounded set by this uniform entourage.

If X is a topological space, then we also require that every K ∈ C is contained
in some open set U ∈ C. So uniformly bounded covers can be enlarged to open
uniformly bounded covers.

Remark 2.6. I asked Nick Wright whether the bounded subsets defined in this way
form a bornology (the definition I have in mind is from [1]). The answer I have in
mind in no, because in Nick’s definition of coarse structures, the diagonal is not
assumed to be an entourage (when this happens, Nick Wright calls it a unital coarse
structure, because then the uniform Roe C∗-algebra is unital). Then the bounded
sets of X do not in general cover X, and that is a condition required by Bunke and
Engel’s definition of a bornology. I wonder whether or not being non-unital in the
sense of Nick Wright is interesting enough in some cases.

Definition 2.7. Let (X,EX) and (Y,EY ) be coarse spaces. A set-theoretic map
f : X → Y is called coarse if:

• f × f is controlled, i.e. maps entourages to entourages.
• The preimage of a bounded set under f is also bounded.
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Fix a very ample module HX for X, which means that it is the infinite direct sum
of some ample module. The uniform Roe C∗-algebra C∗

u(X) of a coarse space X is
the closure of all controlled operators. The Roe C∗-algebra C∗(X) is the closure of
all locally compact and controlled operators.

Roe C∗-algebras are functorial for coarse maps using covering isometries. A
covering isometry for a coarse map f : X → Y is an isometry Vf : HX → HY such
that

{(y, f(x)) | (y, x) ∈ SuppVf } ∈ EY .

Ampleness implies the existence of covering isometries. And on the K-theory level

AdVf
: K∗(C∗(X)) → K∗(C∗(Y ))

is canonically defined.

Exercise 2.8. Find an covering isometry for the coarse equivalence Z ↪→ R.

3. Assembly maps

In the following we describe the “controlled dual” approach (i.e. Paschke duality)
to the coarse Baum–Connes conjecture. Fix an ample module H for X. An operator
T ∈ B(H) is pseudolocal if:

• ϕT − Tϕ ∈ K for all ϕ ∈ C0(X).
• ϕTψ ∈ K for all ϕ, ψ ∈ C0(X) with ϕψ = 0.

Let D∗(X) be the closure of all controlled, pseudolocal operators. It contains C∗(X)
as an ideal. The K-homology of X is defined as

K∗(X) := K∗+1(D∗(X)/C∗(X)).

The assembly map is the boundary map ∂ : K∗(X) → K∗(C∗(X)) in the K-theory
long exact sequence for the inclusion of ideal C∗(X) ⊆ D∗(X).

Higson and Roe [4] proved that the assembly map is an isomorphism if X is
scalable, which we now define.

Definition 3.1. A metric space X is scalable if there exists a map f : X → X such
that:

• d(f(x), f(y)) ≤ 1
2d(x, y).

• f is homotopic to the identity map.
• There exsts a sequence

{f0 = id, f1, . . .}

such that:
– For every bounded set K ⊆ X: fn|K = f |K for n ≫ 0.
– fn is uniformly close to fn+1.

These conditions say that {fn} is a coarse homotopy from id to f .

Remark 3.2. The usual definition of a coarse homotopy uses a map f : [0, 1]×X → X
(see [5]). But there is no difference if we replace it by the countable sequence in
coarse geometry.

We have the following coarse homotopy invariance for scalable spaces:

Lemma 3.3. If X is scalable. Then coarse homotopic maps induce the same map
in K-homology.
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Proof. Let E∗(X) denote the closure of all controlled operators, and the double of
E∗(X) over C∗(X) is defined as

D := {(S + T, S) | S ∈ E∗(X), T ∈ C∗(X)}.
Then the quotient map D → E∗(X) splits. So K∗(D) = K∗(C∗(X))⊕K∗(E∗(X)) =
K∗(C∗(X)). Now let [P ] ∈ K∗(C∗(X)) and define

Q := (f0∗P ⊕ f1∗(P ) ⊕ · · · , f∗P ⊕ f∗P ⊕ · · · )
which lies in D (due to the very ampleness!) since on any bounded set only a finite
number of i make fi∗P differ from f∗P . Each fi is uniformly close to fi+1, so Q is
equivalent to

Q′ := (f1∗P ⊕ f2∗(P ) ⊕ · · · , f∗P ⊕ f∗P ⊕ · · · )
which means that (f0∗P, f∗P ) is trivial in K-theory. So [f0∗P ] = [f∗P ] = [f1∗P ]. □

Theorem 3.4 (Higson–Roe). If X is scalable, then the assembly map for X is an
isomorphism.

Proof. One checks that f∗ = id on K∗(D∗(X)) by using f∗ = id in K∗(D∗(X)/C∗(X))
and K∗(C∗(X)). Note that (pointed out by Thomas Schick) one cannot use the
five lemma here: the five lemma only tells that f∗ is necessarily an isomorphism on
K∗(D∗(X)), which is not enough.

Now for [P ] ∈ K∗(D∗(X)), we have that
Q := P ⊕ f∗P ⊕ f∗f∗P ⊕ . . .

lies in D because the propagation tends to 0. f∗ = id on K∗(D∗(X)) implies that
Q is equivalent to

f∗Q = f∗P ⊕ f∗f∗P ⊕ f∗f∗f∗P ⊕ . . .

which further implies that [P ] = 0 in K∗(D∗(X)). This is fairly standard Eilenberg
swindle argument. □

4. Coarse Baum–Connes conjecture

It is useful to first look at the Baum–Connes conjecture, which states that the
map

KG
∗,G-cpt(EG) → K∗(C∗

r (G))
is an isomorphism.

If G is torsion-free, then BG is compact and the left-hand side is equivalent to
K∗(BG) = KG

∗ (EG), where EG is the universal principal G-space. In the general
case, one needs to use EG which is the universal proper G-space. This space is the
infinite simplex on G and we define

KG
∗,G-cpt(EG) := lim−→

X⊆EG
G-cpt

KG
∗ (X).

The coarse Baum–Connes conjecture is defined following a similar spirit. Let
EX be the infinite simplex on a coarse space (X,E). For each E ∈ E, define the
Rip complex PE(X) as the subcomplex of EX, generated by simplices of the form

[x0, . . . , xn], d(xi, xj) ≤ d.

Definition 4.1. The coarse K-homology of X is defined to be
KX∗(X) := lim

−→
K∗(PE(X)).
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Conjecture 4.2 (Coarse Baum–Connes conjecture, CBC). The map KX∗(X) →
K∗(C∗(X)) is an isomorphism. The map is defined using the following non-trivial
isomorphism

K∗(C∗(X)) ≃ lim
−→

K∗(C∗(PE(X))).

Yu [7] proved that CBC holds for spaces with finite asymptotic dimension:

Definition 4.3. A coarse space X has asymptotic dimension less or equal than n,
if there exists a sequence of uniformly bounded cover {Uk}k∈N such that:

• The Lebesgue number of Uk tends to 0 as k → ∞.
• The nerve of every Uk is less or equal than n.

Assume G is torsion-free and X = EG is a finite G-CW-complex. Then the
left-hand side of the Baum–Connes conjecture is just KG

∗ (EG). In this setting, we
have:

Theorem 4.4. The CBC for X implies the injectivity of the Baum–Connes as-
sembly map.

The proof is based on a “descent principal” and uses equivariant Roe C∗-algebras.
I do not plan to cover this.

5. Roe C∗-algebras and groupoids

The final part will be devoted to understanding the results mainly contained in
the work [6] of Skandalis, Tu and Yu. They define the Roe C∗-algebra of a coarse
space X as a reduced crossed product by a so-called coarse groupoid GX .

We first define the (uniform) Roe C∗-algebra of a group. Let G be a discrete
group with a left-invariant word-length metric ρ. The uniform Roe C∗-algebra of
G, denoted by C∗

u(G) is generated by
(ρ(g)δx 7→ δxg−1)g∈G and ℓ∞X.

The uniform Roe C∗-algebra C∗
u(G) can be also defined as ℓ∞G⋊rG. Similarly, the

Roe C∗-algebra of G is defined as ℓ∞(G,K)⋊rG. The key point is that d(x, y) ≤ R
iff x = yg−1 for some g with ρ(g) ≤ R.

Example 5.1. If G = Zd equipped with the obvious word-length metric. Then we
recover the well-known result (at least well-known to me)

C∗
u(Zd) = ℓ∞(Zd) ⋊r Zd and C∗(Zd) = ℓ∞(Zd,K) ⋊r Zd.

A crossed product is the C∗-algebra of an action groupoid. Since ℓ∞(G) can
be identified with Cb(G) and therefore with C(βG) where βG is the Stone-Čech
compactification of G. So

C∗
u(G) = C(βG) ⋊r G = C∗

r (βG⋊G).
The space βX can be identified with the space of ultrafilters on X.

Definition 5.2. An ultrafilter on a set X is a collection of subsets ω ∈ P(X) such
that:

• If A,B ∈ ω, then A ∩B ∈ ω.
• If A ∈ ω and A ⊆ B, then B ∈ ω.
• For every A ⊆ X, either A ∈ ω or X \A ∈ ω.

If A ∈ ω, then we say the ultrafilter ω chooses A.
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Example 5.3. Let x ∈ X. Then

ωx := {A ⊆ X | x ∈ A}

is an ultrafilter, called the principal filter with principal element x.

Proposition 5.4. There is a bijection between points in βX and ultrafilters on X.
A point x ∈ X ⊆ βX is identified with the principal ultrafilter ωx.

More generally, if A ⊆ X is a subset. Then there is a bijection between βA and
Ā, which is the set of ultrafilters on X which choose A. Ā is clopen and is the
closure of A in βX. These clopen sets form a topology for βX.

Remark 5.5. Ultrafilter chooses between subsets of X. If A ∈ ω and A =
∐

i Ai

is a finite disjoint union. Then ω chooses exactly one of Ai: suppose first that ω
chooses none of Ai’s, then ω chooses X \Ai and hence ω chooses⋂

i

X \Ai = X \
∐

i

Ai = X \A

contradicting to the condition that X chooses exactly one of A and X \A.
Now assume ω chooses at least two of Ai’s, say, Ai and Aj . Then ω chooses

∅ = Ai ∩Aj as well. Then X = X \ ∅ is not chosen by ω. But if A ∈ ω and A ⊆ X,
then X ∈ ω. This is a contradiction.

Definition 5.6. Let (X,E) be a coarse space of bounded geometry. The coarse
groupoid GX is the set of all ultrafilters on X × X which choose an entourage.
Equivalently, we may write

GX :=
⋃

E∈E

Ē .

GX contains X × X (view points in X as principal ultrafilters). The composition
on GX extends the pair groupoid X ×X ⇒ X.

Theorem 5.7. We have

C∗
r (GX) ≃ ℓ∞X ⋊r GX ≃ C∗

u(X) and ℓ∞(X,K) ⋊r GX ≃ C∗(X).

An alternative description of GX is as follows.
A partial translation on X is an entourage t such that both coordinate projections

are injective. Then t gives a partial bijection

pr1(t) 7→ pr2(t), or x 7→ y iff (x, y) ∈ t.

Let E be an entourage and Ē be the ultrafilters on X × X choosing E . Since X is
assumed to have bounded geometry, we have E = t1 ∪ . . . ∪ tn is a finite union of
partial translations. So every ultrafilter in Ē chooses between t1, . . . , tn.

Then GX is the groupoid of germ of partial translations, i.e.
• GX consists of equivalence classes [ω, t] with

ω ∈ βX, t a partial translation such that ω chooses pr1(t).

The equivalence relation is

[ω, t] ∼ [ω′, t′] if ω = ω′, pr1(t ∩ t′) ∈ ω.

• The composition is

[ω, t] · [η, s] = [ω, t ◦ s].
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Remark 5.8. Partial translations are partial bijections, and hence give rise to semi-
group actions. This makes it possible to describe a Roe C∗-algebra as a semigroup
crossed product. As Nick Wright indicated, this is an ongoing work of one of his
students.

6. Boundary coarse Baum–Connes conjecture

The followings are completely new to me. It might be interesting to see whether
they have certain physical applications. Another question I have in mind would
be how they are related to (stable) Higson coronas and therefore to the coarse co-
assembly maps of Emerson and Meyer [2]. The latter have potential applications
in index theory.

Definition 6.1. The boundary coarse groupoid is the restriction of GX to ∂βX,
say,

∂GX = GX \X ×X ⇒ ∂βX.

Let ∂ℓ∞(X,K) := ℓ∞(X,K)/C0(X,K). The boundary Roe C∗-algebra is
C∗

∂X := ∂ℓ∞(X,K) ⋊r ∂GX .

Example 6.2. If G is a group. Then GX = βG⋊G, X ×X = G×G = G⋊G and
∂GX = ∂βG⋊G.

The boundary CBC asserts a “boundary assembly map”, from a suitable coarse
K-homology group to the K-theory of the boundary Roe C∗-algebra, is an isomor-
phism. The coarse K-homology is defined using groupoid-equivariant Kasparov
theory. Finn-Sell and Wright [3] proved that the boundary coarse Baum-Connes
conjecture holds for sequences of bounded-degree graphs of large girth. Unfortu-
nately, I do not understand most of the terms in this statement.
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